

Изследвания върху полските култури, 2006, Том III - 2 Field Crops Studies, 2006, Vol. III - 2

ВЛИЯНИЕ НА ПОВИШЕНАТА КОНЦЕНТРАЦИЯ НА СО₂ И АЗОТНОТО ТОРЕНЕ И ВЪРХУ МИНЕРАЛНИЯ СЪСТАВ НА ТВЪРДА ПШЕНИЦА

Светла Костадинова¹, Галя Панайотова², ¹Аграрен Университет, Пловдив ²Институт по памука и твърдата пшеница, Чирпан

Резюме

Костадинова, С., Г. Панайотова, 2006. Влияние на повишената концентрация на СО, и азотното торене върху минералния състав на твърда пшеница

Проучвано е съдържанието на хранителните елементи азот, фосфор, калий, калций, магнезий, желязо и манган в надземните органи на твърда пшеница сорт Възход във фаза цъфтеж в зависимост от азотното торене и повишената концентрация на CO₂ в атмосферата при контролирани условия. Установено е, че сухата маса на растенията във фаза цъфтеж нараства при повишено азотно хранене и повишена концентрация на CO₂ в атмосферата. Повишената концентрация на CO₂ в атмосферата. Повишената концентрация на CO₂ в атмосферата. Повишената концентрация на CO₂ в атмосферата слабо влияе върху съдържанието на азот, фосфор и магнезий във флаговия лист. Най-високо съдържание на манган и желязо в надземните органи на твърда пшеница във фаза цъфтеж е установено при торените с азот растения, отглеждани при повишена концентрация на CO₂ в атмосферата.

Ключови думи: Твърда пшеница – Минерален състав – СО₂ – Азот

Abstract

Kostadinova, S., G. Panayotova, 2006. Effect of Elevated CO_2 and Nitrogen on the Mineral Composition of Durum Wheat

The effect of elevated CO_2 concentration and nitrogen on the nutrients content (nitrogen, phosphorus, potassium, calcium, magnesium, iron and manganese) on the aboveground organs of durum wheat variety Vazhod at anthesis was studied. The investigation was carried out under controlled conditions. It was established that the elevated nitrogen and CO_2 concentration increased the plants' dry mass at anthesis. The elevated CO_2 concentration of the atmosphere had a week effect on nitrogen, phosphorus and magnesium content in the flag leaf. The highest content of manganese and iron in the aboveground organs of durum wheat was established in plants grown under elevated CO_2 concentration and nitrogen fertilization.

Key words: Durum wheat - Mineral composition - Elevated CO₂ – Nitrogen

УВОД

Изследванията за климатичните промени прогнозират, че през 2100 г. съдържанието на $\rm CO_2$ в атмосферата ще се повиши до 540–970 мmol mol²¹ и

температурата на въздуха средно с 1.4–5.8 °С (IPCC, 2001). Пшеницата е една от най-чувствителните житни култури към повишена концентрация на CO_2 в атмосферата (Cortufo et al., 1998) и реагира с по-висока скорост на натрупване на биомаса и повисоки с 10-20 % добиви зърно при добра водообезпеченост (Bencze et al., 2005). Това е много по-слабо или не се наблюдава при недостатъчна обезпеченост с азот (White et al., 2004). При отглеждане на пшеницата при повишена концентрация на CO_2 в атмосферата и добра обезпеченост с вода и азотна храна се синтезира средно с 11,5 % повече биомаса от растенията. При ниски нива на азотно хранене увеличената биомаса под влияние на завишени нива на CO_2 е само 3 %, а при азотно торене до 19 % (Kimball et al., 2002).

Повишената концентрация на CO₂ в атмосферата може да предизвика разреждащ ефект по отношение концентрацията на хранителни елементи в тъканите при житните растения. Когато те се отглеждат при двойно по-висока концентрация на CO₂ в атмосферата от настоящата, съотношението C:N се повишава средно с 15 % (Gifford et al., 2000). Все още липсват сигурни научни данни за разреждащ ефект по отношение съдържанието на фосфор в растенията. Установено е, че повишената концентрация на CO₂ в атмосферата понижава съдържанието на Ca, S, Mg и Zn в пшенични растения в резултат на разреждащ ефект от повишено акумулиране на въглехидрати и понижено постъпването на Ca по пътя на транспирацията (Frangmeier et al., 1997).

По-ниските концентрации на хранителни елементи в растенията могат да са причина за по-силна чувствителност при стресови условия на отглеждане (Barrett et al., 1998) и имат важно значение за храненето на животните и човека (Hesmas, 2000). Установено е, че повишената концентрация на CO_2 в атмосферата оказва слаб разреждащ ефект върху съдържанието на протеини в пшеничното зърно при високо ниво на азотно хранене (Kimball et al., 2002). Последните научни обзори заключават, че "не съществува ясен модел" – взаимодействието между повишената концентрация на CO_2 в атмосферата и съдържанието на хранителни елементи в растенията може да бъде от антагонизъм до синергизъм или да липсва такова (Poorter and Perez-Soba, 2001; Bassiri Rad et al., 2001; Rubio et al., 2003; Lynch and Clair, 2004; Veisz et al., 2005).

Целта на настоящето проучване е да се установи влиянието от повишената концентрация на СО₂ в атмосферата и азотното торене върху растежа и минералния състав при твърдата пшеница.

МАТЕРИАЛ И МЕТОДИ

Твърда пшеница сорт Възход е отглеждана в съдове с перлит (10 растения на съд). Растенията са снабдявани с вода и хранителни вещества под формата на хранителен разтвор (Sanchez de la Puente et al. 2000). Проучвани са две нива на азотно торене - ниско (5 mM KNO₃) и високо (10 mM KNO₃), и две концентрации на CO₂ в атмосферата - 350 мmol mol^{?1} и 700 мmol mol^{?1}. Изследването е проведено при контролирани условия в два климатични бокса с температура 22/16 єС ден/нощ, осветеност 350 µmol m⁻² s⁻¹, 70 % относителна влажност на въздуха и 16 часов фотопериод. Във фаза цъфтеж са изследвани съдържанието на хранителни елементи в надземните органи флагов лист, останали листа, клас, последно междувъзлие и стъбло без последно междувъзлие. Съдържанието на общ азот, фосфор и калий е определено след мокро изгаряне, а на останалите елементи на атомно-абсорбционен спектрофотометър след сухо изгаряне (Walinga et al., 1995). За математическа обработка на получените резултати е използван дисперсионен анализ и тест на Дънкан.

РЕЗУЛТАТИ И ОБСЪЖДАНЕ

Повишената концентрация на CO₂ в атмосферата не влияе съществено върху акумулирането на суха маса в класа и в стъблото без последното междувъзлие при твърда пшеница сорт Възход (Табл. 1 и 2). Най-много суха надземна маса синтезират растенията отглеждани при повишени азотно хранене и съдържание на CO₂ в атмосферата. Положителното влияние на азотното торене е най-силно по отношение сухата маса на флаговия лист и останалите листа. В тези органи се натрупва с около 50 % повече суха маса, спрямо тази при отглеждане на растенията при ниско азотно хранене. При повишено азотно хранене пшеничните растения натрупват с 13 % повече надземната суха маса, когато са отглеждани при повишено съдържание на CO₂ в атмосферата. Листата най-чувствително реагират на завишената концентрация на CO₂ в атмосферата, натрупвайки с 30 % повече суха маса.

Таблица 1. Дисперсионен анализ за ефекта на факторите CO_2 и N върху акумулирането на суха маса в надземните органи **Table 1.** Two-way analysis of variance of the effect of factors CO_2 and N on the dry mass accumulation of aboveground organs

	Фактори, Factors			
Opran, Organ	CO ₂	Ν	CO ₂ x N	
Флагов лист, Flag leaf	**	**	*	
Останали листа, Rest of leaves	*	**	*	
Клас, Spike		*	*	
Последно междувъзлие, Last internode	*	*	*	
Останало стъбло, Rest of stem		**	*	
Надземна маса, Aboveground biomass	*	*	*	

Ниво на доказаност: * 0,01<P<0,05; ** 0,001<P<0,01; *** P<0,001

Таблица 2. Суха маса на надземните органи във фаза цъфтеж (g/10растения) Table 2. Dry mass of aboveground organs at anthesis, (g /10 plants)

	CO ₂ -350		CO ₂ -700		
Opran; Organ	- N	+ N	- N	+ N	LOD
Флагов лист, Flag leaf	2,09 c	2,84 b	2,48 bc	3,92 a	1,09
Останали листа, Rest of leaves	4,48 c	6,64 b	5,00 c	8,16 a	1,53
Клас, Spike	8,54 b	11,96 a	9,48 b	12,36 a	2,49
Последно междувъзлие, Last internode	7,71 b	9,52 a	8,44 ab	10,44 a	1,82
Останало стъбло, Rest of stem	18,39 c	21,64 b	19,68 c	23,84 a	1,97
Обща надземна маса, Aboveground biomass	41,21 d	51,98 b	45,08 c	58,72 a	3,88

Резултатите от направения двуфакторен дисперсионен анализ показват, че повишената концентрация на CO₂ в атмосферата няма доказано влияние върху съдържанието на азот, фосфор и магнезий във флаговия лист при пшеничните растения (Табл. 3). Повишената концентрация на атмосферен CO₂ причинява ефект на разреждане в съдържанието на азот в останалите листа, последното междувъзлие и стъблото без последно междувъзлие. Той се наблюдава в растенията, отглеждани при високо ниво на азотно хранене.

Орган,	CO ₂ -350		CO ₂ -700		LSD
Organ	- N	+ N	- N	+ N	
		N (%)		
1	3,15 b	3,49 a	2,99 c	3,56 a	0,088
2	1,68 d	2,32 a	1,84 c	2,25 b	0,059
3	1,59 d	1,91 b	1,84 c	2,05 a	0,061
4	1,49 b	1,74 a	1,51 b	1,47 b	0,049
5	0,50 b	0,74 a	0,37c	0,56 b	0,042
		P ₂ O ₅	(%)		
1	1,63 a	1,31 b	1,57 a	1,52 a	0,203
2	0,89 a	0,87 a	0,73 b	0,73 b	0,103
3	0,55 d	0,64 c	1,01 a	0,80 b	0,064
4	0,80 a	0,82 a	0,71 b	0,69 b	0,076
5	0,53 ab	0,48 b	0,39 c	0,55 a	0,074
		K ₂ O	(%)		
1	3,40 a	2,79 d	2,88 c	3,15 b	0,064
2	3,40 a	2,78 c	2,84 c	3,00 b	0,069
3	1,02 b	1,03 b	1,25 a	1,20 a	0,049
4	2,48 b	2,69 a	2,28 c	2,52 b	0,157
5	1,72 b	2,08 a	1,56 c	1,88 b	0,093
CaO (%)					
1	1,159 b	1,217 b	1,063 c	1,468 a	0,076
2	1,460 b	1,348 c	1,251 d	1,585 a	0,064
3	0,111 c	0,181 a	0,153 b	0,195 a	0,025
4	0,181 b	0,209 a	0,139 c	0,222 a	0,032
5	0,125 a	0,111 a	0,070 b	0,125 a	0,020
MgO (%)					
1	0,661 b	0,606bc	0,579 c	0,744 a	0,071
2	0,515 b	0,448 c	0,365 d	0,564 a	0,047
3	0,116 c	0,133 bc	0,166 a	0,149 ab	0,025
4	0,166 b	0,199 a	0,116 c	0,149 b	0,029
5	0,083 b	0,116 a	0,066 b	0,116 a	0,025

Таблица 3. Съдържание на макроелементи в надземните органи в цъфтеж, % Table 3. Concentration of macronutrients in aboveground organs at anthesis, %

*1 - Флагов лист, Flag leaf; 2 - Останали листа, Rest of leaves; 3 – Клас, Spike;
4 - Последно междувъзлие, Last internode; 5 - Останало стъбло, Rest of stem

Разреждащ ефект от повишената концентрация на CO_2 в атмосферата се установява при съдържанието на фосфор в останалите листа и в последното междувъзлие. В тези органи съдържанието на фосфор намалява от средно 0,88 % и 0,81 % P_2O_5 на 0,73 % и 0,70 % P_2O_5 , съответно.

Ефект на разреждане при калия се установява само в листата на растения, отглеждани при ниско ниво на азотно хранене и повишено съдържание на CO₂ във въздуха. Средното съдържание на калий в листата се понижава от 3,40 % K₂O на 2,86 % K₂O. Независимо от нивото на азотна осигуреност, пшеничните класове във фаза цъфтеж съдържат повече калий при отглеждане в атмосфера с повишена концентрация на CO₂.

Получените от нас резултати потвърждават установеното от Frangmeier et al., (1997), че повишената концентрация на CO₂ в атмосферата понижава съдържанието на Ca и Mg в пшенични растения (Табл. 3). Във фаза цъфтеж при добре осигурените с азот растения от сорт Възход, обаче се установява повишаване на съдържанието на Ca и Mg в надземните им части.

Най-високо съдържание на Mn и Fe в надземните органи на твърда пшеница във фаза цъфтеж е установено при торените с азот растения, отглеждани при повишена концентрация на CO₂ в атмосферата (Табл. 4).

Таблица 4. Съдържание на желязо и манган в надземните органи в цъфтеж Table 4. Concentration of Fe and Mn in aboveground organs at anthesis

Орган,	CO ₂ -350		CO ₂ -700		LSD	
Organ	- N	+ N	- N	+ N		
Fe, ppm						
1	163 c	167 b	159 c	211 a	3,4	
2	180 b	182 b	291 a	243 ab	72,0	
3	167 b	170 b	201 a	202 a	4,0	
4	119 c	139 b	211 a	194 a	5,4	
5	125 d	134 c	149 b	167 a	3,3	
Mn, ppm						
1	62 b	64 b	56 c	70 a	4,2	
2	75 b	72 b	61 c	97 a	3,8	
3	13 c	15 bc	16 b	19 a	1,7	
4	31 c	37 a	28 b	39 a	2,7	
5	27 c	31 b	24 d	34 a	1,4	

*1 - Флагов лист, Flag leaf; 2- Останали листа, Rest of leaves; 3 – Клас, Spike;

4 - Последно междувъзлие, Last internode; 5 - Останало стъбло, Rest of stem

изводи

Надземната суха маса на растения от твърда пшеница сорт Възход във фаза цъфтеж нараства при повишено азотно хранене и повишена концентрация на CO₂ в атмосферата.

Повишената концентрация на CO₂ в атмосферата слабо влияе върху съдържанието на азот, фосфор и магнезий във флаговия лист. Най-високо съдържание на манган и желязо в надземните органи на твърда пшеница във фаза цъфтеж е установено при торените с азот растения, отглеждани при повишена концентрация на CO₂ в атмосферата.

ЛИТЕРАТУРА

- Barrett D., A. Richardson and R. Gifford, 1998. Elevated atmospheric CO₂ concentrations increase wheat root phosphatase activity when growth is limited by phosphorus, *Aust. J. Plant Physiol.* 25, 87–93.
- **Bencze S., O. Veisz, Z. Bedo, 2005**. Effect of elevated CO₂ temperature on the photosynthesis and yield of wheat, Cereal Research Communication, Vol. 33, Issue 1, 385-388.
- **Bassiri Rad H., V.P. Gutschick and J. Lussenhop, 2001.** Root system adjustments: regulation of plant nutrient uptake and growth responses to elevated CO₂, *Oecologia* **126,** 305–320.
- **Cortufo M.F., Ineson P., Scott A., 1998**. Elevated CO₂ reduces the N concentration of plant tissues, *Global Change Biol.* 4, 43-54.
- Fangmeier P., U. Gruters, P. Hogy, B. Vermehren and H.J. Jager,1997. Effects of elevated CO₂ nitrogen supply and tropospheric ozone on spring wheat. 2. Nutrients (N, P, K, S, Ca, Mg, Fe, Mn, Zn), *Environ. Pollut.* 96 43–59.
- **Gifford R.M., D.J. Barrett and J.L. Lutze, 2000.** The effects of elevated CO₂ on the C:N and C:P mass ratios of plant tissues, *Plant Soil,* 224, 1–14.

- Hesman T., 2000. Greenhouse gassed: carbon dioxide spells indigestion for food chains, *Sci. News* **157**, 200–202.
- **IPCC, 2001.** Intergovernmental Panel on Climate Change (IPCC), 2001. Climate Change 2001: Synthesis Report, summary for Policymakers.
- Kimball, B. A., K. Kobayashi, M. Bindi, 2002. Responses of agricultural crops to free-air CO₂ enrichment, Advances of Agronomy, Vol.77, 293-368.
- Lynch, J. P. and S. Clair, 2004. Mineral stress: the missing link in understanding how global climate change will affect plants in real world soils, Field Crops Research, Vol. 90, Issue 1, 101-115.
- **Sanchez de la Puente, L., P. Perez, R. Martinez-Carrasco et al., 2000.** Action of elevated CO₂ and high temperatures on the mineral chemical composition of two varieties of wheat, *Agrochimica*, Vol. XLIV, No. 5-6, 220-230.
- **Poorter H. and M. Perez-Soba**, **2001**. The growth response of plants to elevated CO₂ under non-optimal environmental conditions, *Oecologia* **129**, 1–20.
- Rubio G., J. Zhu and J.P. Lynch, 2003. A critical test of the two prevailing theories of plant response to nutrient availability, *Am. J. Bot.* **90**, 143–152.
- **Veisz O., S. Bencze and Z. Bedo, 2005**. Effect of elevated CO₂ on wheat at various nutrient supply levels, Cereal Research Communication, Vol. 33, Issue 1, 333-336.
- Walinga, L., J. Van Der Lee, V. Houba, I. Novozamsky, 1995. Plant Analysis Manual, Kluwer Academic Publishers, The Netherlands.
- White W., McMaster G., G. Edmeades, 2004. Physiology, genomics and crop response to global change, Field Crops Research, Vol. 90, Issue 1, 1-3.